Abstract

Computational simulations of macrocycle-encapsulated single-walled carbon nanotubes (SWNTs) and C60 are reported. A molecular mechanical force field method has been used to calculate the physical properties of these complexes. The calculation shows that the macrocycle-encapsulated SWNTs and C60 are more stable than free SWNTs and C60. When macrocycles are bound to SWNTs, energetically stable well regions have been observed. The energetic and dipolar changes of an armchair SWNT upon binding by a macrocycle are different from those of a zigzag SWNT. SWNTs with pentagon−heptagon defects are compared with normal SWNTs. Calculated large energetic stabilization in a water environment suggests that wrapping inorganic macrocycles around SWNTs can promote the solubility of SWNTs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.