Abstract

Given that power consumption and short-channel effects exist in a trade-off relationship, there has been much effort to investigate short-channel transistors which enable relative reductions in the operating voltage. Recently, the feasibility of transistors operating at ultra-low voltages with a nanometer-scale channel length has been extensively investigated for future nanoelectronics. Here, we demonstrate solution-processed single-walled carbon nanotubes-based thin-film transistors (SWCNT-TFTs) with a sub-20-nm-channel operating at ultra-low voltages which utilize an electromigration technique that induces a broken bridge of nanoparticles. By employing the post-treatment process of thermal annealing in a vacuum, the charge transport of the short-channel SWCNT-TFTs was improved. The origin of such improvements is presumed to reduce the charge impurities, including organic/inorganic residues as defect states, as well as to improve electric contact between the SWCNT and the metal electrode, which strongly affects the one-dimensional charge transport.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call