Abstract

Carbon nanotube-silicon solar cells are a recently investigated photovoltaic architecture with demonstrated high efficiencies. Silicon solar-cell devices fabricated with a thin film of conductive polymer (polyaniline) have been reported, but these devices can suffer from poor performance due to the limited lateral current-carrying capacity of thin polymer films. Herein, hybrid solar-cell devices of a thin film of polyaniline deposited on silicon and covered by a single-walled carbon nanotube film are fabricated and characterized. These hybrid devices combine the conformal coverage given by the polymer and the excellent electrical properties of single-walled carbon nanotube films and significantly outperform either of their component counterparts. Treatment of the silicon base and carbon nanotubes with hydrofluoric acid and a strong oxidizer (thionyl chloride) leads to a significant improvement in performance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call