Abstract

Networks of pristine high quality single walled carbon nanotubes (SWNTs), the SWNTs after Ar-plasma treatment (from 2 to 12 min) and carbon nanobuds (CNBs) have been tested for ethanol vapor sensing. It was found that the pristine high quality SWNTs do not exhibit any ethanol sensitivity, while the introduction of defects in the tubes results in the appearance of the ethanol sensitivity. The CNB network showed ethanol sensitivity without plasma treatment. Both CNB and low defect (after 3 min treatment) SWNT networks exhibit significant drift in the resistance baseline, while heavily plasma-treated (9 min) SWNTs exhibited high ethanol vapor sensitivity without the baseline change. The mechanisms of the ethanol sensitivity and stability after the plasma irradiation are attributed to the formation of sensitive dangling bonds in the SWNTs and formation of defect channels facilitating access of the ethanol vapor to all parts of the bundled nanotubes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.