Abstract
In order to measure the yarn parameter information more accurately with the image analysis method, an adaptive grayscale enhancement and linear region threshold segmentation algorithm are proposed systematically. The grayscale contrast of the yarn and background is enhanced to avoid the poor effect of single threshold based image segmentation method, thereby improving the recognition and measurement accuracy of the yarn hairiness. Using the self-developed image acquisition system to acquire the image sequence of yarn samples, the accuracy and effectiveness of the image analysis algorithm were validated accordingly. Experimental results show that the proposed two algorithms can significantly reduce the information loss of yarn image and good robustness could be achieved. The length and number of yarn hairiness detected by the image methods are highly correlated with those of the visual inspection method, and the CV of yarn evenness is also consistent with the traditional method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.