Abstract

Purpose: Although anterior cruciate ligament (ACL) reconstruction with multistrand autogenous hamstring tendons has been widely performed using a single femoral socket (SS), it is currently advocated to individually reconstruct 2 bundles of the ACL using 2 femoral sockets (TS). However, the difference in biomechanical characteristics between them is unknown. The objective of this study was to clarify their biomechanical differences. Type of Study: This is a cross-over trial using cadaveric knees. Methods: Seven intact human cadaveric knees were mounted in a robotic simulator developed in our laboratory. By applying anterior and posterior tibial load up to ± 100 N at 0°, 15°, 30°, 60°, and 90° of flexion, tibial displacement and load were recorded. After cutting the ACL, the knees underwent ACL reconstruction using TS, followed by that using SS, with 44 or 88 N of initial grafts tension at 20° of flexion. The above-mentioned tests were performed on each reconstructed knee. Results: The tibial displacement in the TS technique was significantly smaller than that in the SS at smaller flexion angles in response to anterior and posterior tibial load of ± 100 N, and the in situ force in the former was significantly greater than that in the latter at smaller flexion angles. Furthermore, in the TS technique, the posterolateral graft acted dominantly in extension, while the anteromedial graft mainly resisted against anterior tibial load in flexion. However, in the SS technique, the anteriorly located graft functioned more predominantly than the posteriorly located graft at all flexion angles. Conclusions: The ACL reconstruction via TS using quadrupled hamstring tendons provides better anterior-posterior stability compared with the conventional reconstruction using a single socket.Arthroscopy: The Journal of Arthroscopic and Related Surgery, Vol 17, No 7 (September), 2001: pp 708–716

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.