Abstract

BackgroundPrediction of neurological outcome is a crucial part of post cardiac arrest care and prediction in patients remaining unconscious and/or sedated after rewarming from targeted temperature management (TTM) remains difficult. Current guidelines suggest the use of serial measurements of the biomarker neuron-specific enolase (NSE) in combination with other predictors of outcome in patients admitted after out-of-hospital cardiac arrest (OHCA). This study sought to investigate the ability of NSE to predict poor outcome in patients remaining unconscious at day three after OHCA. In addition, this study sought to investigate if serial NSE measurements add incremental prognostic information compared to a single NSE measurement at 48 hours in this population.MethodsThis study is a post-hoc sub-study of the TTM trial, randomizing OHCA patients to a course of TTM at either 33°C or 36°C. Patients were included from sites participating in the TTM-trial biobank sub study. NSE was measured at 24, 48 and 72 hours after ROSC and follow-up was concluded after 180 days. The primary end point was poor neurological function or death defined by a cerebral performance category score (CPC-score) of 3 to 5.ResultsA total of 685 (73%) patients participated in the study. At day three after OHCA 63 (9%) patients had died and 473 (69%) patients were not awake. In these patients, a single NSE measurement at 48 hours predicted poor outcome with an area under the receiver operating characteristics curve (AUC) of 0.83. A combination of all three NSE measurements yielded the highest discovered AUC (0.88, p = .0002). Easily applicable combinations of serial NSE measurements did not significantly improve prediction over a single measurement at 48 hours (AUC 0.58–0.84 versus 0.83).ConclusionNSE is a strong predictor of poor outcome after OHCA in persistently unconscious patients undergoing TTM, and NSE is a promising surrogate marker of outcome in clinical trials. While combinations of serial NSE measurements may provide an increase in overall prognostic information, it is unclear whether actual clinical prognostication with low false-positive rates is improved by application of serial measurements in persistently unconscious patients. The findings of this study should be confirmed in another prospective cohort.Trial registrationNCT01020916

Highlights

  • Half of the unconscious patients admitted after out-of-hospital cardiac arrest (OHCA) will not survive to hospital discharge[1]

  • neuron-specific enolase (NSE) is a strong predictor of poor outcome after OHCA in persistently unconscious patients undergoing temperature management (TTM), and NSE is a promising surrogate marker of outcome in clinical trials

  • While combinations of serial NSE measurements may provide an increase in overall prognostic information, it is unclear whether actual clinical prognostication with low false-positive rates is improved by application of serial measurements in persistently unconscious patients

Read more

Summary

Introduction

Half of the unconscious patients admitted after out-of-hospital cardiac arrest (OHCA) will not survive to hospital discharge[1]. Prediction of neurological outcome is an important part of post-CA care and the biomarker neuron-specific enolase (NSE) has been suggested as a possible prognostic marker of poor neurological outcome in OHCA patients. In post-CA care, different NSE cut-off values for poor outcome have been suggested, but a definite consensus has not been obtained and current guidelines do not support the isolated use of NSE for outcome prediction after OHCA but state that serial NSE-measurements should be a part of multimodal prognostication strategies[11,12]. Current guidelines suggest the use of serial measurements of the biomarker neuron-specific enolase (NSE) in combination with other predictors of outcome in patients admitted after out-of-hospital cardiac arrest (OHCA). This study sought to investigate the ability of NSE to predict poor outcome in patients remaining unconscious at day three after OHCA. This study sought to investigate if serial NSE measurements add incremental prognostic information compared to a single NSE measurement at 48 hours in this population

Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.