Abstract

Achieving a controlled and reproducible means to direct stem cell differentiation is the single most critical concern scientists have been trying to address since the discovery of stem cells. In this regard, the use of small molecules and RNA interference offers unique advantages by targeting different cellular mechanisms. Our cyclodextrin-modified dendritic polyamine construct (termed DexAM) combines the unique properties of two distinct chemical moieties in a single delivery vehicle. DexAM is a single vehicle that not only solubilizes hydrophobic small molecules in physiological solutions but also forms complexes with siRNA molecules, making it an attractive delivery system for controlling stem cell differentiation. Herein, we report the synthesis and application of DexAM to simultaneously deliver hydrophobic small molecules and siRNA into neural stem cells to significantly enhance their neuronal differentiation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.