Abstract

Using first principle and based on the density functional theory, we have studied the effect of the single vacancy on the electronic properties of armchair graphene nanoribbons (AGNRs). Results show that the system is the most stable when the vacancy is at edge site. It is found that AGNRs always become metallic, regardless of the vacancy position. As the vacancy concentration decreases, the influence of the vacancy position on band structures becomes weaker and weaker. As the ribbon width increases, the particular value characterizing the strength of metallicity decreases in oscillation. Vacancy-induced semiconductor to metal transition in AGNRs provides the theoretical direction for the application of graphene in the electrionic devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.