Abstract

The problem of achieving security of device-independent (or semi-device-independent) cryptography (for quantum key distribution and randomness generation) against the most general no-signaling adversaries has remained open. It has been recognized that the realization of extremal no-signaling non-local boxes (or extremal no-signaling non-local assemblages) could provide a route toward devising such highly secure protocols. We first prove a general no-go result that in the Bell non-locality scenario, quantum theory does not allow us to realize any extremal no-signaling non-local box, even if scenarios of arbitrary sequential measurements are considered. On the other hand, we secondly prove a positive result showing that a one-sided device-independent scenario where a single party trusts their qubit system is already sufficient for quantum theory to realize a self-testing extremal non-local point within the set of no-signaling assemblages.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.