Abstract

Successful encoding, maintenance, and retrieval of information stored in working memory requires persistent coordination of activity among multiple brain regions. It is generally assumed that the pattern of such coordinated activity remains consistent for a given task. Thus, to separate this task-relevant signal from noise, multiple trials of the same task are completed, and the neural response is averaged across trials to generate an event-related potential (ERP). However, from trial to trial, the neuronal activity recorded with electroencephalogram (EEG) is actually spatially and temporally diverse, conflicting with the assumption of a single pattern of activity for a given task. Here, we show that variability in neuronal activity among single time-locked trials arises from the presence of multiple forms of stimulus dependent synchronized activity (i.e., distinct ERPs). We develop a data-driven classification method based on community detection to identify three discrete spatio-temporal clusters, or subtypes, of trials with different patterns of activation that are further associated with differences in decision-making processes. These results demonstrate that differences in the patterns of neural activity during working memory tasks represent fluctuations in the engagement of distinct brain networks and cognitive processes, suggesting that the brain can choose from multiple mechanisms to perform a given task.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.