Abstract

Tree species classification is important for a variety of environmental applications, including biodiversity monitoring, wildfire risk assessment, ecosystem services assessment, and sustainable forest management. In this study we used a fusion of three remote sensing (RM) datasets including ALS (leaf-on and leaf-off) and colour-infrared (CIR) imagery (leaf-on), to classify different coniferous and deciduous tree species, including dead class, in a mixed temperate forest in Poland. We used intensity and structural variables from the ALS data and spectral information derived from aerial imagery for the classification procedure. Additionally, we tested the differences in classification accuracy of all the variants included in the data integration. The random forest classifier was used in the study. The highest accuracies were obtained for classification based on both point clouds and including image spectral information. The mean values for overall accuracy and kappa were 84.3% and 0.82, respectively. Analysis of the leaf-on and leaf-off alone is not sufficient to identify individual tree species due to their different discriminatory power. Leaf-on and leaf-off ALS point cloud features alone gave the lowest accuracies of 72% ≤ OA ≤ 74% and 0.67 ≤ κ ≤ 0.70. Classification based on both point clouds was found to give satisfactory and comparable results to classification based on combined information from all three sources (83% ≤ OA ≤ 84% and 0.81 ≤ κ ≤ 0.82). The classification accuracy varied between species. The classification results for coniferous trees were always better than for deciduous trees independent of the datasets. In the classification based on both point clouds (leaf-on and leaf-off), the intensity features seemed to be more important than the other groups of variables, especially the coefficient of variation, skewness, and percentiles. The NDVI was the most important CIR-based feature.

Highlights

  • SW ); mean values of overall accuracy and kappa were equal to 84.3%

  • SW); mean values of overall accuracy and kappa were equal to 84.3%

  • The classification results for coniferous trees were always better than for deciduous trees, independent of the datasets (≥79% for both producer accuracy (PA) and user accuracy (UA))

Read more

Summary

Introduction

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. Tree species classification is important for a variety of environmental applications, including biodiversity monitoring [1], wildfire risk assessment [2], ecosystem services assessment [3], and sustainable forest management [4]. Mapping tree species through visual interpretation of aerial images by experts in combination with in situ measurements is labour-intensive, time-consuming, and costly. The method is not applicable to large forest areas [5]. Technological developments have influenced the possibility of mapping the forest species composition using remote sensing data

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.