Abstract

We propose a model for a single-trapped-ion vibronic Raman laser and study its dynamics by using quantum-trajectory methods. In our treatment, it is essential that both the cavity field of the high-finesse optical cavity and the center-of-mass vibrational motion of the trapped ion be quantized. A transition from a super-Poissonian light source to a Poissonian lasing regime is obtained by increasing the Raman coupling constant. Furthermore, we demonstrate that a nonclassical regime can be realized, where the photon statistics becomes sub-Poissonian and the photons leak out of the cavity in an antibunched manner. This is achieved by exploiting nonlinear Stark shifts inherent in the model, which depend on both the number of cavity photons and the number of vibrational quanta.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call