Abstract

We propose a novel single transmission-line readout method for whole-body time-of-flight positron emission tomography applications, without compromising on performance. The basic idea of the proposed multiplexing method is the addition of a specially prepared tag signal ahead of the scintillation pulse. The tag signal is a square pulse that encodes photon arrival time and channel information. The 2D position of a silicon photomultiplier (SiPM) array is encoded by the specific width and height of the tag signal. A summing amplifier merges the tag and scintillation signals of each channel, and the final output signal can be acquired with a one-channel digitizer. The feasibility and performance of the proposed method were evaluated using a 1:1 coupled detector consisting of 4 × 4 array of LGSO crystals and 16 channel SiPM. The sixteen 3 mm LGSO crystals were clearly separated in the crystal-positioning map with high reliability. The average energy resolution and coincidence resolving time were 11.31 ± 0.55% and 264.7 ± 10.7 ps, respectively. We also proved that the proposed method does not degrade timing performance with increasing multiplexing ratio. The two types of LGSO crystals (L0.95GSO and L0.20GSO) in phoswich detector were also clearly identified with the high-reliability using pulse shape discrimination, thanks to the well-preserved pulse shape information. In conclusion, the proposed multiplexing method allows decoding of the 3D interaction position of gamma rays in the scintillation detector with single-line readout.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call