Abstract
Today’s pharmaceutical industry is facing various challenges. Two of them are issues with supply chain security and the increasing demand for personalized medicine. Both can be addressed by increasing flexibility and a more decentralized approach to pharmaceutical manufacturing. In this study, we present a setup that provides flexibility in terms of supplied raw materials and the product, i.e., a direct-compression setup for personalized tablets operating at a single-tablet-scale. The performance of the implemented single-tablet-scale technology for dosing and mixing was investigated. In addition, an analysis of the critical quality attributes (CQAs) of immediate release ibuprofen and loratadine tablets was performed. The developed dosing device achieved acceptance rates of > 90 % for doses ≥ 20 mg for various pharmaceutical powders. Regarding the vibratory mixing process, a dependency of the performance on the applied frequencies and acceleration was observed, with 100 Hz and ∼ 90 G performing best, yet still exhibiting varying mixing efficacies depending on the granular system. The tablets produced met U.S. Pharmacopeia requirements regarding mechanical stability and dissolution characteristics. Given these results, we consider the developed setup a proof of concept of a tool to provide personalized tablets to patients while minimizing the dependency on complex supply chains.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.