Abstract

A lack of methods for measuring the protein compositions of individual synapses insitu has so far hindered the exploration and exploitation of synapse molecular diversity. Here, we describe the use of array tomography, a new high-resolution proteomic imaging method, to determine the composition of glutamate and GABA synapses in somatosensory cortex of Line-H-YFP Thy-1 transgenic mice. We find that virtually all synapses are recognized by antibodies to the presynaptic phosphoprotein synapsin I, while antibodies to 16 other synaptic proteins discriminate among 4 subtypes of glutamatergic synapses and GABAergic synapses. Cell-specific YFP expression in the YFP-H mouse line allows synapses to be assigned to specific presynaptic and postsynaptic partners and reveals that a subpopulation of spines on layer 5 pyramidal cells receives both VGluT1-subtype glutamatergic and GABAergic synaptic inputs. These results establish a means for the high-throughput acquisition of proteomic data from individual cortical synapses insitu.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.