Abstract

To prevent partial-shading issues in photovoltaic (PV) systems, various kinds of voltage equalizers that virtually unify characteristics of shaded and unshaded modules have been proposed. Although PV string utilization can be dramatically improved, PV systems tend to be complex and costly because, in addition to the main converter for string control, voltage equalizers are separately necessary. This paper proposes the single-switch single-magnetic pulse width modulation (PWM) converter integrating the voltage equalizer using the series-resonant voltage multiplier (SRVM) for standalone PV systems. By utilizing a square wave voltage generated across a filter inductor in a PWM buck converter for driving the SRVM, the main PWM converter and voltage equalizer can be integrated into a single unit with reducing the total switch and magnetic component counts, achieving not only system-level but also circuit-level simplifications. The experimental test using the prototype for three PV modules connected in series was performed emulating a partial-shading condition. The integrated converter effectively precluded the partial-shading issues and significantly improved the power available at a load, demonstrating its efficacy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call