Abstract

The single-stranded DNA binding protein, or gene V protein (gVp), encoded by gene V of the filamentous bacteriophage M13 is a multifunctional protein that not only regulates viral DNA replication but also gene expression at the level of mRNA translation. It furthermore is implicated as a scaffolding and/or chaperone protein during the phage assembly process at the hostcell membrane. The protein is 87 amino acids long and its biological functional entity is a homodimer. In this manuscript a short description of the life cycle of filamentous phages is presented and our current knowledge of the major functional and structural properties and characteristics of gene V protein are reviewed. In addition models of the superhelical complexes gVp forms with ssDNA are described and their (possible) biological meaning in the infection process are discussed. Finally it is described that the 'DNA binding loop' of gVp is a recurring motif in many ssDNA binding proteins and that the fold of gVp is shared by a large family of evolutionarily conserved gene regulatory proteins.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.