Abstract

Telomere homeostasis, a process that is essential for the maintenance of chromosome integrity, is regulated by telomerase and a collection of associated proteins. By mass spectrometry we have identified a new telomeric protein encoded by the AtWHY1 (Arabidopsis thaliana Whirly 1) gene in Arabidopsis. AtWHY1 specifically binds the single-stranded plant telomeric DNA sequences, but not double-stranded telomeric DNA. To gain insights into the function of AtWHY1 in telomere biogenesis, we have identified two Arabidopsis lines harboring T-DNA insertions in AtWHY1. These lines exhibit neither growth nor developmental defects. However, AtWHY1-deficient plants show a steady increase in the length of telomere tracts over generations. This telomere elongation is correlated with a significant increase in telomerase activity. On the contrary, transgenic plants expressing AtWHY1 show a decreased telomerase activity and shortened telomeres. The evidence presented here indicates that AtWHY1 is a new family of telomere end-binding proteins that plays a role in regulating telomere-length homeostasis in Arabidopsis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.