Abstract

Proprotein convertase subtilisin/kexin 9 (PCSK9) serves a key regulatory function in the metabolism of low-density lipoprotein (LDL)-cholesterol (LDL-C) through interaction with the LDL receptor (LDLR) followed by its destruction that results in the elevation of the plasma levels of LDL-C. The aims of the present study were to separate and select a number of single-stranded DNA (ssDNA) aptamers against PCSK9 from a library pool (n > 1012) followed by their characterization. The aptamers obtained from the DNA-PCSK9 complexes which presented the highest affinity against PCSK9 were separated and selected using capillary electrophoresis evolution of ligands by exponential enrichment (CE-SELEX). The selected aptamers were amplified and cloned into a T/A vector. The plasmids from the positive clones were extracted and sequenced. The Mfold web server was used to predict the secondary structure of the aptamers. Following three rounds of CE-SELEX, the identified anti-PCSK9 ssDNA aptamers, namely aptamer 1 (AP-1) and aptamer 2 (AP-2), presented half maximal inhibitory concentrations of 325 and 327 nM, lowest dissociation constants of 294 and 323 nM, and most negative Gibbs free energy values of - 9.17 and - 8.28 kcal/mol, respectively. The results indicated that the selected aptamers (AP-1 and AP-2) induced potent inhibitory effects against PCSK9. Further in vivo studies demand to find out AP-1 and AP-2 aptamers as suitable candidates, instead of antibodies, for using in therapeutic purposes in patients with hypercholesterolemia and cardiovascular disease.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.