Abstract

This study examined genetic variability within Spirometra erinacei (Cestoda: Pseudophyllidea) from different host species and geographical origins in Australia using a polymerase chain reaction (PCR)-based mutation detection approach, followed by DNA sequencing. Part of the cytochrome c oxidase subunit 1 gene (p cox 1) was amplified by PCR, scanned for sequence variation by single-strand conformation polymorphism (SSCP), and representative samples from different host species were selected for DNA sequencing. While no variation in SSCP profiles was detected among S. erinacei samples from dog, fox, cat, tiger snake and python, they differed in profile from 5 specimens from the green tree frog (Litoria caerulea). This was supported by sequence data which demonstrated that p cox 1 sequences of samples from the latter host species differed at 8 of 393 (2%) nucleotide positions from those from the non-amphibian host. Using a nucleotide difference in the p cox 1 sequence, a PCR-linked restriction fragment length polymorphism (RFLP) could be employed to unequivocally delineate between samples from non-amphibian and amphibian hosts. These findings demonstrate the existence of at least two genotypes within S. erinacei, which may have important implications for studying the epidemiology, ecology and systematics of this cestode.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call