Abstract

A simple and sensitive technique for detection of strand breaks in DNA has been further developed. The method has been used to follow UV-induced excision-repair in human fibroblasts. It has been possible to study the kinetics of enzymic reactions in intact cells, in which strand breaks in DNA are produced and sealed again. Hydroxyurea, 5-fluorodeoxyuridine and 1-β- d-arabinofuranosylcytosine, potent inhibitors of DNA synthesis, drastically increased the number of breaks observed during the repair process. This was probably due to a decreased polymerase acivity, which will cause the strand breaks formed by endonuclease to remain open longer. The initial rate of strand-break formation did not seem to be influenced by hydroxyurea or araC, and was about 4000 breaks per minute in a diploid genome, at a dose of 20 J/m 2. After 5–30 min, depending on the dose of UV, the number of breaks reached a maximum and started to decrease again. Hydroxyurea decreased the rate of polymerization in the sites under repair. However, there was no concomitant reduction fo repair-induced incorporation of [ 3H]thymidine and nor reduction of the excision of pyrimidine dimers. It therefore seems that the action of the polymerase was not a rate-limitting event, but rather an earlier step. It is likely that the endonucleolytic activity determined the rate of repair. As a consequence, the endonuclease and polymerase cannot be bound in a permanent complex. Under certain assumptions, the time of repair of a site, i.e. the time from incision to final ligase sealing can be estimated as between 3 and 10 min. Essentially no breaks were produced in Xeroderma pigmentosum cells belonging to complementation group A, and there was no enhancement by hydroxyurea. Cells from the variant type of Xeroderma pigmentosum behaved like normal cells in this respect.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.