Abstract

Recently, polymeric graphitic carbon nitride (g-C3N4) has been explored as a potential catalytic material for the removal of organic pollutants in wastewater. In this work, graphitic carbon nitride (g-C3N4) photocatalysts were synthesized using mixtures of low-cost, environment-friendly urea and thiourea as precursors by varying calcination temperatures ranging from 500 to 650 °C for 3 h in an air medium. Different analytical methods were used to characterize prepared g-C3N4 samples. The effects of different calcination temperatures on the structural, morphological, optical, and physiochemical properties of g-C3N4 photocatalysts were investigated. The results showed that rhodamine B (RhB) dye removal efficiency of g-C3N4 prepared at a calcination temperature of 600 °C exhibited 94.83% within 180 min visible LED light irradiation. Photocatalytic activity of g-C3N4 was enhanced by calcination at higher temperatures, possibly by increasing crystallinity that ameliorated the separation of photoinduced charge carriers. Thus, controlling the type of precursors and calcination temperatures has a great impact on the photocatalytic performance of g-C3N4 towards the photodegradation of RhB dye. This investigation provides useful information about the synthesis of novel polymeric g-C3N4 photocatalysts using a mixture of two different environmentally benign precursors at high calcination temperatures for the photodegradation of organic pollutants.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.