Abstract

Nitrogen reduction electrocatalysts are highly attractive for catalytic science. However, most electrocatalysts are limited by their low faradaic efficiency, poor ammonia yield, and tedious and costly catalyst synthesis process. In this work, Fe-based oxide composite nanoparticles with steady chemical states are prepared by a single-step green procedure under ambient conditions. The resulting Fe-Fe3 O4 demonstrates remarkable activity and selectivity for nitrogen reduction reaction (NRR) with the highest faradaic efficiency of 53.2±1.8 % and NH3 yield rate of 24.6±0.8 μg h-1 mgcat. -1 at -0.4 V (vs. RHE) in 0.1 m Na2 SO4 electrolyte. Characterization experiments and theoretical calculation reveal that Fe-Fe3 O4 exhibits significantly enhanced charge transfer capability and suppresses the competitive HER process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.