Abstract

For many tissue engineering applications, cells such as human mesenchymal stem cells (hMSCs) must be embedded in hydrogels. The analysis of embedded hMSCs requires RNA extraction, but common extraction procedures often produce low yields and/or poor quality RNA. We systematically investigated four homogenization methods combined with eight RNA extraction protocols for hMSCs embedded in three common hydrogel types (alginate, agarose, and gelatin). We found for all three hydrogel types that using liquid nitrogen or a rotor-stator produced low RNA yields, whereas using a microhomogenizer or enzymatic/chemical hydrogel digestion achieved better yields regardless of which extraction protocol was subsequently applied. The hot phenol extraction protocol generally achieved the highest A260 values (representing up to 40.8 μg RNA per 10(6) cells), but the cetyltrimethylammonium bromide (CTAB) method produced RNA of better quality, with A260/A280 and A260/A230 ratios and UV spectra similar to the pure RNA control. The RNA produced by this method was also suitable as a template for endpoint and quantitative reverse transcription-PCR (qRT-PCR), achieving low Ct values of ∼20. The prudent choice of hydrogel homogenization and RNA extraction methods can ensure the preparation of high-quality RNA that generates reliable endpoint and quantitative RT-PCR data. We therefore propose a universal method that is suitable for the extraction of RNA from cells embedded in all three hydrogel types commonly used for tissue engineering.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.