Abstract

Purification of high quantities of human grade plasmid DNA is one of the most intensive production steps. Because of that several methods have been proposed, among them also chromatographic purification using methacrylate monoliths. Recently, a process comprising the combination of hydrophobic interaction (HIC) monolith and ion-exchange monolith was developed. In this work both chemistries were tried to be introduced on a single monolith. Methacrylate monoliths bearing octylamine groups, combination of butyl (C4) grafted methacrylate groups and diethylaminoethyl (DEAE) groups as well as grafted chains bearing both C4 and DEAE groups were prepared. All monoliths were investigated for their ionic and protein capacity and compared to conventional epoxy, C4, and DEAE methacrylate monoliths. Octylamine monolith and monolith bearing combination of C4 grafted methacrylate groups and DEAE groups were found to be the most promising candidates and were further tested for plasmid DNA (pDNA) dynamic binding capacity under ion-exchange (IEX) and HIC binding conditions and ability to separate open circular (OC) from supercoiled (SC) pDNA forms and RNA from pDNA. Since monolith bearing combination of grafted C4 methacrylate groups and DEAE groups was superior in all three tested features, exhibiting pDNA dynamic binding capacity of 4.7mg/ml under IEX conditions and 2.1mg/ml under HIC conditions, it was used for the development of a single step purification method and tested with pure pDNA as well as with cell lysate. Developed method removed over 99% of RNA, host cell proteins (HCP) and genomic DNA (gDNA) demonstrating capacity to purify around 1.5mg ofpDNA/ml of monolith from cell lysate.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call