Abstract
Carbon nanodot (C-dot) decorated V2O5 (C-dot@V2O5) nanobelts are synthesized by single step, low cost hydrothermal route at low temperature by using V2O5 and glucose as precursors. We have not added any extra organic solvents or surfactants which are commonly used for the preparation of different nanostructures of V2O5. Electron microscopy analyses demonstrate that C-dot is entrapped inside V2O5 nanobelts which in turn enhance the conductivity and ion propagation property of this composite material. The C-dot@V2O5 nanobelts exhibit an excellent three electrode electrochemical performance in 1M Na2SO4 and which showed a specific capacitance of 270Fg−1 at 1Ag−1, which is ~ 4.5 times higher than the pristine V2O5 electrode. The electrochemical energy storage capacity of this hybrid is investigated towards solid state supercapacitor application also for the first time by employing electrophoretically deposited C-dot as the counter electrode and Li based gel as the electrolyte. The hybrid material delivers an energy density of 60Whkg−1 and a reasonably high power density of 4.1kWkg−1 at 5Ag−1 and good cycling stability and capacitance retention of about 87% was observed even after 5000 cycles. Above mentioned results clearly show that C-dot embedded hybrid, nanostructured transition metal oxides has great potential towards fabrication of electrodes for energy storage devices.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.