Abstract
CaO sorbents have received extensive attentions in the field of high-temperature CO2 removal due to its outstanding characters of low cost, fast sorption kinetics and high theoretical capacity. Granulating CaO powder into spherical pellets is requisite prior to its commercial application for post-combustion CO2 capture. This work proposed a facile agar-assisted moulding technique for the pelletization of CaO sorbents inspired from the strong coagulability and hydrophobicity of agar powder. In addition, finding efficient calcium precursors to produce CaO sorbents is also crucial to their CO2 sorption performance. Hence, two novel organometallic precursors, i.e., calcium laurate and calcium myristate, were employed in the current work. The obtained CaO sorbents exhibited a high degree of sphericility and uniform sizes of 3–4 mm. Besides, these sorbent pellets presented good CO2 sorption performance. In particular, the pellets using calcium laurate as precursor showed impressive performance, including high sorption rate and carbonation conversion (up to 0.92). The excellent performance was attributed to the rich porosity and porous structures of this sorbent. Such characters were believed to be brought by the burning of agar and organometallic precursors at high temperatures, which resulted in the quick release of large volumes of gases in a short time and, thus, led to the formation of porous structures. In addition, the burning out of the well dispersed agar powder in the sorbent pellet also left abundant pores in situ in the pellets. Generally, the good performance of the prepared CaO pellets demonstrates the effectiveness of the agar-assisted moulding technique for the sorbent granulation and the suitability of calcium laurate as calcium precursor.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.