Abstract

Hollow microneedle arrays (HMNs) are an excellent choice for managing chronic diseases requiring the administration of multiple drug doses over a prolonged duration. However, HMNs have gained partial success due to limitations in their manufacturing capabilities, and cumbersome processes. In the present study, polymeric HMNs were fabricated using a novel single-step drop-casting process without needing cleanroom facilities, and sophisticated instrumentation. When drop casted on the pyramidal tip stainless steel needles, the optimized polymer solution allowed the reproducible formation of desired height HMMs on a detachable acrylic base. To enable broader applications, the base with HMNs was integrated into an experimental package built to deliver a dose of ∼ 5 µL per 30° clockwise rotation of the actuator, allowing multiple metered drug dose administrations. The fabricated HMNs were optically imaged, and tested for mechanical integrity and stability. The working and functional utility of the HMNs package in delivering metered drug doses was demonstrated by delivering vitamin B12 (ex vivo) and insulin (in vivo), respectively. The optimized process can be used for the large-scale manufacturing of HMNs and the experimental package shows the potential to be further developed into a wearable device.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.