Abstract
To realize high-capacity Si anodes for next-generation Li-ion batteries, Si/Sn nanowires were fabricated in a single-step procedure using He plasma sputtering at a high pressure of 100–500 mTorr without substrate heating. The Si/Sn nanowires consisted of an amorphous Si core and a crystalline Sn shell. Si/Sn composite nanowire films formed a spider-web-like network structure, a rod-like structure, or an aggregated structure of nanowires and nanoparticles depending on the conditions used in the plasma process. Anodes prepared with Si/Sn nanowire films with the spider-web-like network structure and the aggregated structure of nanowires and nanoparticles showed a high Li-storage capacity of 1219 and 977 mAh/g, respectively, for the initial 54 cycles at a C-rate of 0.01, and a capacity of 644 and 580 mAh/g, respectively, after 135 cycles at a C-rate of 0.1. The developed plasma sputtering process enabled us to form a binder-free high-capacity Si/Sn-nanowire anode via a simple single-step procedure.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.