Abstract

Mn2+ doped FeS2 thin films were deposited on ITO coated conducting glass substrate at 50 °C in an aqueous medium by simple electrochemical deposition technique. The structural and phase purity of the Mn2+ doped FeS2 thin films were investigated using XRD technique. The XRD analysis revelaed that the fabricated thin films were cubic structure along with the (200) plane preferential orientation. The diffraction peak slightly shifted towards lower 2θ values which confirmed that doping of Mn ions into FeS2 host matrixes. The calculated band gap energy of Mn2+ doped FeS2 thin films showed a red shift of absorption edge compared to undoped FeS2 thin film. EIS indicated that Mn2+ doped FeS2 thin films showed lower charge transfer resistance with better conductivity nature compared to undoped sample. Moreover, the photo electrochemical measurements carried out for the optimized Mn2+ doped FeS2 thin film which revealed the faster migration of photo-induced charge-carriers. Electro catalytic activity of Mn-doped FeS2 thin films were studied for the redox reaction of iodide/triiodide (I−/I3−) by using cyclic voltammetry measurement.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.