Abstract

Liquid crystalline materials with a cycloidal molecular orientation pattern are attractive for fabricating diffractive waveplates, diffracting incident light regardless of its polarization state into left- and/or right-circularly polarized light only in the +1st and/or −1st orders, applicable as next-generation optical devices. However, large-area high-speed processing of such molecular orientation is a challenge, since even state-of-the-art photoalignment methods require a precise spatial modulation of the polarization states of incident light, e.g., polarization holograms. Here, we propose and demonstrate that unpolarized light could easily generate cycloidal molecular orientation patterns over large areas in a single step merely by using our recently developed method of “scanning wave photopolymerization” with a simple optical setup. Importantly, the processing time for fabricating millimeter-scale films was significantly decreased to less than a few minutes. Detailed investigation revealed that the resultant film showed the desired diffraction behavior with a diffraction efficiency of 50%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.