Abstract
The production of increasing amounts of high salinity wastewaters in our industrialized society has prioritized their treatment to prevent environmental pollution. The partial nitritation - anammox (PN/A) process for nitrogen removal has been little investigated for hypersaline wastewaters (salinity greater than 3%). In the investigation presented here, single-stage versus two-stage partial nitritation - anammox (PN/A) reactor systems for deammonification at 4% (40 g/kg) saline conditions were investigated and compared in completely mixed fixed bed reactors. In the two-stage system, the first stage reactor achieved a nitritation rate of 1.9 gN/L-reactor/d. Effluent from the partial nitritation reactor was then fed to the second two-stage anammox reactor and the maximal nitrogen removal of 0.8 g/L-reactor/d was achieved. The dominant microbial species for the ammonia oxidizing and anammox reactions in the nitritation (first) reactor and the second reactor were identified as Nitrosococcus oceani and Candidatus Scalindua wagneri, respectively, both obligate halophiles. In the single-stage reactor, deammonification rates reached 0.6 gN/L-reactor/d. Nitrosomonas marina and Candidatus Scalindua wagneri were the dominant AOB and anammox bacteria, respectively. Maintaining free ammonia (FA) concentrations above 1 mg/L was found to selectively inhibit nitrite oxidizing bacteria (NOB) and resulted in long term stable nitritation. At FA concentrations lower than 1 mg/L, nitrate began to appear after 20 days of reactor operation. Nitritation was recovered after increasing FA in the reactor to inhibitory concentrations. Overall N2O emissions were shown to be significantly lower in the single-stage PN/A reactor than the two stage PN/A reactor system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.