Abstract

Modular multilevel converters with non-sinusoidal ac voltage output can reduce cost and volume in medium-voltage-connected electric vehicle battery charging applications. The use of full-bridge submodules in such converters enables single-stage ac/ac voltage conversion, allowing a medium-voltage grid to be directly connected to a medium-frequency isolation transformer. The application of a square wave voltage at the medium-frequency transformer’s single-phase port enhances the converter’s efficiency and power density in comparison to a sinusoidal voltage. This paper presents the analysis and modelling of a modular multilevel converter, comparing its operation with sinusoidal and square wave output voltages. A single control scheme for both output voltage waveforms is proposed for the three-phase and single-phase ac currents, circulating currents, and the energy stored in the submodule capacitors. The control strategy of the three-phase and single-phase port currents is verified through simulation and experiments using a scaled-down prototype, thereby validating its suitability for high-power bidirectional battery chargers.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.