Abstract
We use an external spin as a dynamical probe of many body localization. The probe spin is coupled to an interacting and disordered environment described by a Heisenberg spin chain in a random field. The spin-chain environment can be tuned between a thermalizing delocalized phase and non-thermalizing localized phase, both in its ground- and high-energy states. We study the decoherence of the probe spin when it couples to the environment prepared in three states: the ground state, the infinite temperature state and a high energy N\'eel state. In the non-thermalizing many body localized regime, the coherence shows scaling behaviour in the disorder strength. The long-time dynamics of the probe spin shows a logarithmic dephasing in analogy with the logarithmic growth of entanglement entropy for a bi-partition of a many-body localized system. In summary, we show that decoherence of the probe spin provides clear signatures of many-body localization.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.