Abstract
We show that the operators and the quadrupole and Zeeman Hamiltonians for a spin (3/2) can be represented in terms for a system of two coupling fictitious spins (1/2) using the Kronecker product of Pauli matrices. Particularly, the quadrupole Hamiltonian which describes the interaction of the nuclear quadrupole moment with an electric field gradient is represented as the Hamiltonian of Ising model in a transverse selective magnetic field. The Zeeman Hamiltonian, which describes interaction of the nuclear spin with the external magnetic field, can be considered as the Hamiltonian of the Heisenberg model in a selective magnetic field. The total Hamiltonian can be interpreted as the Hamiltonian of 3D Heisenberg model in an inhomogeneous magnetic field applied along the x-axis. The representation of a single spin (3/2) as two-spin (1/2) system allows us to study entanglement in the spin system. One of the features of the fictitious spin system is that, in both the pure and the mixed states, the concurrence tends to 0.5 with increase of applied magnetic field. The representation of a spin (3/2) as a system of two coupling fictitious spins (1/2) and possibility of formation of the entangled states in this system open a way to the application of a single spin (3/2) in quantum computation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.