Abstract

Absorptive corrections, which are known to suppress proton-neutron transitions with a large fractional momentum z→1 in pp collisions, become dramatically strong on a nuclear target, and they push the partial cross sections of leading neutron production to the very periphery of the nucleus. The mechanism of the pion π and axial vector meson a1 interference, which successfully explains the observed single-spin asymmetry in a polarized pp→nX, is extended to the collisions of polarized protons with nuclei. When corrected for nuclear effects, it explains the observed single-spin azimuthal asymmetry of neutrons that is produced in inelastic events, which is where the nucleus violently breaks up. This single-spin asymmetry is found to be negative and nearly atomic mass number A-independent.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.