Abstract

Electromagnetic (EM) wave-absorbing materials with high-temperature-resistance are urgently desirable to eliminate EM interference in extreme conditions. Precursor derived ceramics (PDC) route is being evolved as an effective strategy to solve the puzzle. Herein, a single source hyperbranched polyborosilazane precursor containing hafnium (hb-PBSZ-Hf) is introduced and the SiBCNHf ceramic is obtained by further pyrolysis. The micro-sized tissues including HfC, SiC, HfB2 nanocrystals and segregated carbons are in situ generated during annealing which not only increase EM wave absorption ability (minimum reflection coefficient (RCmin) is -56.71 dB with a thickness of 2.5 mm, effective absorption bandwidth (EAB) is 3.4 GHz), but also improve antioxidation property (less than 2 wt.% mass fluctuation at 1400 °C in air). Theoretical simulation of complex permittivity suggests that SiBCNHf ceramic has an RCmin of less than -5 dB for the whole X-band even at 1100 °C. Such SiBCNHf ceramic with superior high-temperature-resistance and antioxidation performance derived from single source precursors possesses great potential for EM wave absorbing coatings in high-temperature and harsh environments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.