Abstract

When pricing Bermudan derivatives by regression-based methods, foresight bias will appear in lower bounds when using a single simulation to estimate the exercise strategy and to compute lower bounds. In this paper, we propose a new method to remove this kind of bias without introducing an independent simulation. Numerical results indicate that the goodness of our method is comparable to that of using independent simulations. In addition, this method can be parallelized and enhanced by local regression. These improvements boost the accuracy and the time efficiency of lower bounds.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.