Abstract

In this study, using only a single pulse, pump-probe measurement with a large time window of more than 100 ps is implemented. A commercial grating is used to encode a time window of ∼56 ps in a single pulse; therefore, there is no need for machining customization. In addition, in this technique, the grating surface is accurately imaged, eliminating the image blur problem caused by phase differences in previous echelon-based techniques. Moreover, to make full use of the grating surface and obtain a larger time window, a simple reflection echelon is combined that matches the grating in the time window. This combination encoding strategy results in a total time window of ∼109 ps and maintains accurate imaging of the grating surface. This time window is an order of magnitude greater than the maximum reported values of the echelon encoding strategy and the angle beam encoding strategy. To demonstrate this single-shot pump-probe technique, the two-photon absorption process of ZnSe and the excited-state absorption process of a symmetrical phenoxazinium bromine salt were studied. The possibility of further improving the experimental setup is also discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.