Abstract

Non-line-of-sight (NLOS) imaging is a challenging task aimed at reconstructing objects outside the direct view of the observer. Nevertheless, traditional NLOS imaging methods typically rely on intricate and costly equipment to scan and sample the hidden object. These methods often suffer from restricted imaging resolution and require high system stability. Herein, we propose a single-shot high-resolution NLOS imaging method via chromato-axial differential correlography, which adopts low-cost continuous-wave lasers and a conventional camera. By leveraging the uncorrelated laser speckle patterns along the chromato-axis, this method can reconstruct hidden objects of diverse complexity using only one exposure measurement. The achieved background stability through single-shot acquisition, along with the inherent information redundancy in the chromato-axial differential speckles, enhances the robustness of the system against vibration and colored stain interference. This approach overcomes the limitations of conventional methods by simplifying the sampling process, improving system stability, and achieving enhanced imaging resolution using available equipment. This work serves as a valuable reference for the real-time development and practical implementation of NLOS imaging.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call