Abstract
Multispectral quantitative phase imaging (MS-QPI) is a high-contrast label-free technique for morphological imaging of the specimens. The aim of the present study is to extract spectral dependent quantitative information in single-shot using a highly spatially sensitive digital holographic microscope assisted by a deep neural network. There are three different wavelengths used in our method: λ=532, 633, and 808nm. The first step is to get the interferometric data for each wavelength. The acquired datasets are used to train a generative adversarial network to generate multispectral (MS) quantitative phase maps from a single input interferogram. The network was trained and validated on two different samples: the optical waveguide and MG63 osteosarcoma cells. Validation of the present approach is performed by comparing the predicted MS phase maps with numerically reconstructed (F T+T I E) phase maps and quantifying with different image quality assessment metrices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.