Abstract
Single-shot ultrafast multi-frame imaging technology plays a crucial role in the observation of laser-induced plasma. However, there are many challenges in the application of laser processing, such as technology fusion and imaging stability. To provide a stable and reliable observation method, we propose an ultrafast single-shot multi-frame imaging technology based on wavelength polarization multiplexing. Through the frequency doubling and birefringence effects of the BBO and the quartz crystal, the 800 nm femtosecond laser pulse was frequency doubled to 400 nm, and a sequence of probe sub-pulses with dual-wavelength and different polarization was generated. The coaxial propagation and framing imaging of multi-frequency pulses provided stable imaging quality and clarity, as well as high temporal/spatial resolution (200 fs and 228 lp/mm). In the experiments involving femtosecond laser-induced plasma propagation, the probe sub-pulses measured their time intervals by capturing the same results. Specifically, the measured time intervals were 200 fs between the same color pulses and 1 ps between the adjacent different. Finally, based on the obtained system time resolution, we observed and revealed the evolution mechanism of femtosecond laser-induced air plasma filaments, the multifilament propagation of femtosecond laser in fused silica, and the influence mechanism of air ionization on laser-induced shock waves.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.