Abstract

Zebrafish is a well-established animal model for developmental and disease studies. Its optical transparency at early developmental stages allows in vivo tissues visualization. Interaction of polarized light with these tissues provides information on their structure and properties. This approach is effective for muscle tissue analysis due to its birefringence. To enable real-time Mueller-matrix characterization of unanesthetized fish, we assembled a microscope for single-shot Mueller-matrix imaging. First, we performed a continuous observation of 48 species within the period of 2 to 96 hpf and measured temporal dependencies of the polarization features in different tissues. These measurements show that hatching was accompanied by a sharp change in the angle and degree of linearly polarized light after interaction with muscles. Second, we analyzed nine species with skeletal disorders and demonstrated that the spatial distribution of light depolarization features clearly indicated them. Obtained results demonstrated that real-time Mueller-matrix imaging is a powerful tool for label-free monitoring zebrafish embryos.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.