Abstract
Quantum algorithms often benefit from the ability to execute multi-qubit (>2) gates. To date, such multi-qubit gates are typically decomposed into single- and two-qubit gates, particularly in superconducting qubit architectures. The ability to perform multi-qubit operations in a single step could vastly improve the fidelity and execution time of many algorithms. Here, we propose a single shot method for executing an i-Toffoli gate, a three-qubit gate with two control and one target qubit, using currently existing superconducting hardware. We show numerical evidence for a process fidelity over 99.5% and a gate time of 450 ns for superconducting qubits interacting via tunable couplers. Our method can straight forwardly be extended to implement gates with more than two control qubits at similar fidelities.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.