Abstract
Half k-space gradient-recalled echo-planar imaging (GR-EPI) is discussed in detail. T2* decay during full k-space GR-EPI gives rise to unequal weighting of the lines of k-space, loss of signal intensity at the center of k-space, and a point-spread function that limits resolution. In addition, the long readout time for high-resolution full k-space acquisition gives rise to severe susceptibility effects. These problems are substantially reduced by acquiring only half of k-space and filling the empty side by Hermitian conjugate formation. Details of the pulse sequence and image reconstruction are presented. The point-spread function is 3(1/2) times narrower for half than full k-space acquisition. Experiments as well as theoretical considerations were carried out in a context of fMRI using a whole-brain local gradient and an RF coil at 3 Tesla. Using a bandwidth of +/-83 kHz, well-resolved single-shot images of the human brain, as well as good quality fMRI data sets were obtained with a matrix of 192 x 192 over 16 x 16 cm2 FOV using half k-space techniques. The combination of high spatial resolution using the methods presented in this article and the high temporal resolution of EPI opens opportunities for research into fMRI contrast mechanisms. Increase of percent signal change as the resolution increases is attributed to reduction of partial volume effects of activated voxels. Histograms of fMRI pixel responses are progressively weighted to higher percent signal changes as the resolution increases. The conclusion has been reached that half k-space GR-EPI is generally superior to full k-space GR-EPI and should be used even for low-resolution (64 x 64) EPI.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.