Abstract

This work develops a single-shot holographic profilometer that enables shape characterization of discontinuous deep surfaces. This is achieved by combining hologram frequency multiplexing and an illumination technique of complex amplitude in multi-incidence angle profilometer. Object illumination is carried out from seven directions simultaneously, where the radial angular coordinates of illumination plane waves obey the geometric series. It is shown that: (i) the illumination pattern provides the required frequency separation of all object wavefronts in transverse frequency space, which is necessary for hologram demultiplexing, and (ii) numerical generation of longitudinal scanning function (LSF) is possible, which has large measurement range, high axial resolution, and small side lobes. Low side lobes of LSF and the developed multiplexed field dependent aberration compensation method are essential to minimize the negative influence of speckle noise of single-shot capture on the measurement result. The utility of the proposed method is demonstrated with experimental measurement of heights of two step-like objects.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.