Abstract

Ever since the first observation of all-optical switching of magnetization in the ferrimagnetic alloy GdFeCo using femtosecond laser pulses, there has been significant interest in exploiting this process for data-recording applications. In particular, the ultrafast speed of the magnetic reversal can enable the writing speeds associated with magnetic memory devices to be potentially pushed towards THz frequencies. This work reports the development of perpendicular magnetic tunnel junctions incorporating a stack of Tb/Co nanolayers whose magnetization can be all-optically controlled via helicity-independent single-shot switching. Toggling of the magnetization of the Tb/Co electrode was achieved using either 60 femtosecond-long or 5 picosecond-long laser pulses, with incident fluences down to 3.5 mJ/cm2, for Co-rich compositions of the stack either in isolation or coupled to a CoFeB-electrode/MgO-barrier tunnel-junction stack. Successful switching of the CoFeB-[Tb/Co] electrodes was obtained even after annealing at 250 °C. After integration of the [Tb/Co]-based electrodes within perpendicular magnetic tunnel junctions yielded a maximum tunneling magnetoresistance signal of 41% and RxA value of 150 Ωμm2 with current-in-plane measurements and ratios between 28% and 38% in nanopatterned pillars. These results represent a breakthrough for the development of perpendicular magnetic tunnel junctions controllable using single laser pulses, and offer a technologically-viable path towards the realization of hybrid spintronic-photonic systems featuring THz switching speeds.

Highlights

  • Ever since the first observation of all-optical switching of magnetization in the ferrimagnetic alloy GdFeCo using femtosecond laser pulses, there has been significant interest in exploiting this process for data-recording applications

  • Ferrimagnetic systems based on rare earth (RE)-transition metal (TM) alloys and multilayers have been extensively studied in recent decades, largely due to their potential application in the field of magneto-optical recording[1]

  • The strong perpendicular magnetocrystalline anisotropy inherent to amorphous RE-TM systems have allowed these alloys to play a key role in the historical transition from longitudinal to perpendicular magnetic recording structures[2], and made them ideal for handling magnetic bit instabilities arising from superparamagnetic effects[3]

Read more

Summary

Introduction

Ever since the first observation of all-optical switching of magnetization in the ferrimagnetic alloy GdFeCo using femtosecond laser pulses, there has been significant interest in exploiting this process for data-recording applications. After integration of the [Tb/Co]-based electrodes within perpendicular magnetic tunnel junctions yielded a maximum tunneling magnetoresistance signal of 41% and RxA value of 150 Ωμm[2] with current-in-plane measurements and ratios between 28% and 38% in nanopatterned pillars These results represent a breakthrough for the development of perpendicular magnetic tunnel junctions controllable using single laser pulses, and offer a technologically-viable path towards the realization of hybrid spintronic-photonic systems featuring THz switching speeds. Binary and ternary RE-TM systems such as GdFeCo, GdCo, TbCo or GdFe are still driving forward new developments pertaining to spintronic devices, including spin valves for magnetic read heads[4], perpendicular magnetic tunnel junctions (p-MTJs)[5,6] or spin-orbit-torque phenomena[7] Recent works in this field have revealed that RE-TM-based films (amorphous or multilayered) represent ideal materials for the observation and study of the phenomena of all-optical switching (AOS)[8,9,10]. Despite the fact that atomistic calculations predict[12] that single-shot HI-AOS can be achieved in amorphous TbFeCo alloys using femtosecond laser pulses, the practical capability of achieving this in any RE-TM system featuring Tb instead of Gd has, until now, remained undiscovered

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.