Abstract

Protein structure prediction has been greatly improved by deep learning in the past few years. However, the most successful methods rely on multiple sequence alignment (MSA) of the sequence homologs of the protein under prediction. In nature, a protein folds in the absence of its sequence homologs and thus, a MSA-free structure prediction method is desired. Here, we develop a single-sequence-based protein structure prediction method RaptorX-Single by integrating several protein language models and a structure generation module and then study its advantage over MSA-based methods. Our experimental results indicate that in addition to running much faster than MSA-based methods such as AlphaFold2, RaptorX-Single outperforms AlphaFold2 and other MSA-free methods in predicting the structure of antibodies (after fine-tuning on antibody data), proteins of very few sequence homologs, and single mutation effects. By comparing different protein language models, our results show that not only the scale but also the training data of protein language models will impact the performance. RaptorX-Single also compares favorably to MSA-based AlphaFold2 when the protein under prediction has a large number of sequence homologs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.