Abstract

The NO reduction reaction (NORR) toward NH3 is simultaneously emerging for both detrimental NO elimination and valuable NH3 synthesis. An efficient NORR generally requires a high degree of activation of the NO gas molecule from the catalyst, which calls for a powerful chemisorption. In this work, by means of first-principles calculations, we discovered that the NO gas molecule over the Janus WSSe monolayer might undergo a physical-to-chemical adsorption transition when Se vacancy is introduced. If the Se vacancy is able to work as the optimum adsorption site, then the interface's transferred electron amounts are considerably increased, resulting in a clear electronic orbital hybridization between the adsorbate and substrate, promising excellent activity and selectivity for NORR. Additionally, the NN bond coupling and *N diffusion of NO molecules can be effectively suppressed by the confined space of Se vacancy defects, which enables the active site to have the superior NORR selectivity in the NH3 synthesis. Moreover, the photocatalytic NO-to-NH3 reaction is able to occur spontaneously under the potentials solely supplied by the photo-generated electrons. Our findings uncover a promising approach to derive high-efficiency photocatalysts for NO-to-NH3 conversion.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call